y uchun yechish
y = \frac{41}{16} = 2\frac{9}{16} = 2,5625
y = \frac{23}{16} = 1\frac{7}{16} = 1,4375
Grafik
Baham ko'rish
Klipbordga nusxa olish
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(1\times 32+13\right)
Tenglamaning ikkala tarafini 32 ga ko'paytirish.
32\times \frac{|2-y|}{-\frac{2}{5}}=-\left(32+13\right)
32 hosil qilish uchun 1 va 32 ni ko'paytirish.
32\times \frac{|2-y|}{-\frac{2}{5}}=-45
45 olish uchun 32 va 13'ni qo'shing.
\frac{|2-y|}{-\frac{2}{5}}=-\frac{45}{32}
Ikki tarafini 32 ga bo‘ling.
|2-y|=-\frac{45}{32}\left(-\frac{2}{5}\right)
Ikkala tarafini -\frac{2}{5} ga ko‘paytiring.
|2-y|=\frac{-45\left(-2\right)}{32\times 5}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali -\frac{45}{32} ni -\frac{2}{5} ga ko‘paytiring.
|2-y|=\frac{90}{160}
\frac{-45\left(-2\right)}{32\times 5} kasridagi ko‘paytirishlarni bajaring.
|2-y|=\frac{9}{16}
\frac{90}{160} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
|-y+2|=\frac{9}{16}
Teng belgisining bir tarafida va raqamning boshqa tarafida o'zgaruvchanni hisoblash uchun o'xshash hadlarni birlashtirish va tenglik xususiyatlaridan foydalanish.
-y+2=\frac{9}{16} -y+2=-\frac{9}{16}
Absolyut qiymatning ifodasidan foydalanish.
-y=-\frac{23}{16} -y=-\frac{41}{16}
Tenglamaning ikkala tarafidan 2 ni ayirish.
y=\frac{23}{16} y=\frac{41}{16}
Ikki tarafini -1 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}