Baholash
\sqrt{13}\approx 3,605551275
Ashyoviy qism
\sqrt{13} = 3,605551275
Baham ko'rish
Klipbordga nusxa olish
|\frac{\left(5-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}|
\frac{5-i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
|\frac{\left(5-i\right)\left(1-i\right)}{1^{2}-i^{2}}|
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
|\frac{\left(5-i\right)\left(1-i\right)}{2}|
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
|\frac{5\times 1+5\left(-i\right)-i-\left(-i^{2}\right)}{2}|
Binomlarni ko‘paytirgandek 5-i va 1-i murakkab sonlarni ko‘paytiring.
|\frac{5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right)}{2}|
Ta’rifi bo‘yicha, i^{2} – bu -1.
|\frac{5-5i-i-1}{2}|
5\times 1+5\left(-i\right)-i-\left(-\left(-1\right)\right) ichidagi ko‘paytirishlarni bajaring.
|\frac{5-1+\left(-5-1\right)i}{2}|
5-5i-i-1 ichida real va mavhum qismlarni birlashtiring.
|\frac{4-6i}{2}|
5-1+\left(-5-1\right)i ichida qo‘shishlarni bajaring.
|2-3i|
2-3i ni olish uchun 4-6i ni 2 ga bo‘ling.
\sqrt{13}
a+bi murakkab soning moduli – \sqrt{a^{2}+b^{2}}. 2-3i moduli – \sqrt{13}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}