x uchun yechish
x\leq \frac{1}{2}
Grafik
Baham ko'rish
Klipbordga nusxa olish
10|\frac{2x-1}{3}-\frac{3x+1}{5}-\frac{x-2}{15}|\leq 5-2x
Tenglamaning ikkala tarafini 10 ga ko'paytirish. 10 musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
10|\frac{5\left(2x-1\right)}{15}-\frac{3\left(3x+1\right)}{15}-\frac{x-2}{15}|\leq 5-2x
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 5 ning eng kichik umumiy karralisi 15. \frac{2x-1}{3} ni \frac{5}{5} marotabaga ko'paytirish. \frac{3x+1}{5} ni \frac{3}{3} marotabaga ko'paytirish.
10|\frac{5\left(2x-1\right)-3\left(3x+1\right)}{15}-\frac{x-2}{15}|\leq 5-2x
\frac{5\left(2x-1\right)}{15} va \frac{3\left(3x+1\right)}{15} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
10|\frac{10x-5-9x-3}{15}-\frac{x-2}{15}|\leq 5-2x
5\left(2x-1\right)-3\left(3x+1\right) ichidagi ko‘paytirishlarni bajaring.
10|\frac{x-8}{15}-\frac{x-2}{15}|\leq 5-2x
10x-5-9x-3 kabi iboralarga o‘xshab birlashtiring.
10|\frac{x-8-\left(x-2\right)}{15}|\leq 5-2x
\frac{x-8}{15} va \frac{x-2}{15} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
10|\frac{x-8-x+2}{15}|\leq 5-2x
x-8-\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
10|\frac{-6}{15}|\leq 5-2x
x-8-x+2 kabi iboralarga o‘xshab birlashtiring.
10|-\frac{2}{5}|\leq 5-2x
\frac{-6}{15} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
10\times \frac{2}{5}\leq 5-2x
a haqiqiy sonining mutloq qiymati qachon a\geq 0 bo‘lganda, a yoki qachon a<0 bo‘lganda -a. -\frac{2}{5} ning mutloq qiymati \frac{2}{5} ga teng.
\frac{10\times 2}{5}\leq 5-2x
10\times \frac{2}{5} ni yagona kasrga aylantiring.
\frac{20}{5}\leq 5-2x
20 hosil qilish uchun 10 va 2 ni ko'paytirish.
4\leq 5-2x
4 ni olish uchun 20 ni 5 ga bo‘ling.
5-2x\geq 4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing. Bu imzo yo‘nalishini o‘zgartiradi.
-2x\geq 4-5
Ikkala tarafdan 5 ni ayirish.
-2x\geq -1
-1 olish uchun 4 dan 5 ni ayirish.
x\leq \frac{-1}{-2}
Ikki tarafini -2 ga bo‘ling. -2 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\leq \frac{1}{2}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-1}{-2} kasrini \frac{1}{2} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}