z uchun yechish
z=\frac{1+\sqrt{102399999999}i}{80000000000}\approx 1,25 \cdot 10^{-11}+0,000004i
z=\frac{-\sqrt{102399999999}i+1}{80000000000}\approx 1,25 \cdot 10^{-11}-0,000004i
Baham ko'rish
Klipbordga nusxa olish
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\left(-\frac{1}{40000000000}\right)^{2}-4\times \frac{1}{62500000000}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{1}{40000000000} ni b va \frac{1}{62500000000} ni c bilan almashtiring.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-4\times \frac{1}{62500000000}}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{40000000000} kvadratini chiqarish.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{\frac{1}{1600000000000000000000}-\frac{1}{15625000000}}}{2}
-4 ni \frac{1}{62500000000} marotabaga ko'paytirish.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\sqrt{-\frac{102399999999}{1600000000000000000000}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{1600000000000000000000} ni -\frac{1}{15625000000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
z=\frac{-\left(-\frac{1}{40000000000}\right)±\frac{\sqrt{102399999999}i}{40000000000}}{2}
-\frac{102399999999}{1600000000000000000000} ning kvadrat ildizini chiqarish.
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2}
-\frac{1}{40000000000} ning teskarisi \frac{1}{40000000000} ga teng.
z=\frac{1+\sqrt{102399999999}i}{2\times 40000000000}
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} tenglamasini yeching, bunda ± musbat. \frac{1}{40000000000} ni \frac{i\sqrt{102399999999}}{40000000000} ga qo'shish.
z=\frac{1+\sqrt{102399999999}i}{80000000000}
\frac{1+i\sqrt{102399999999}}{40000000000} ni 2 ga bo'lish.
z=\frac{-\sqrt{102399999999}i+1}{2\times 40000000000}
z=\frac{\frac{1}{40000000000}±\frac{\sqrt{102399999999}i}{40000000000}}{2} tenglamasini yeching, bunda ± manfiy. \frac{1}{40000000000} dan \frac{i\sqrt{102399999999}}{40000000000} ni ayirish.
z=\frac{-\sqrt{102399999999}i+1}{80000000000}
\frac{1-i\sqrt{102399999999}}{40000000000} ni 2 ga bo'lish.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
Tenglama yechildi.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
z^{2}-\frac{1}{40000000000}z+\frac{1}{62500000000}-\frac{1}{62500000000}=-\frac{1}{62500000000}
Tenglamaning ikkala tarafidan \frac{1}{62500000000} ni ayirish.
z^{2}-\frac{1}{40000000000}z=-\frac{1}{62500000000}
O‘zidan \frac{1}{62500000000} ayirilsa 0 qoladi.
z^{2}-\frac{1}{40000000000}z+\left(-\frac{1}{80000000000}\right)^{2}=-\frac{1}{62500000000}+\left(-\frac{1}{80000000000}\right)^{2}
-\frac{1}{40000000000} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{80000000000} olish uchun. Keyin, -\frac{1}{80000000000} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{1}{62500000000}+\frac{1}{6400000000000000000000}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{80000000000} kvadratini chiqarish.
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000}=-\frac{102399999999}{6400000000000000000000}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{62500000000} ni \frac{1}{6400000000000000000000} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(z-\frac{1}{80000000000}\right)^{2}=-\frac{102399999999}{6400000000000000000000}
z^{2}-\frac{1}{40000000000}z+\frac{1}{6400000000000000000000} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z-\frac{1}{80000000000}\right)^{2}}=\sqrt{-\frac{102399999999}{6400000000000000000000}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z-\frac{1}{80000000000}=\frac{\sqrt{102399999999}i}{80000000000} z-\frac{1}{80000000000}=-\frac{\sqrt{102399999999}i}{80000000000}
Qisqartirish.
z=\frac{1+\sqrt{102399999999}i}{80000000000} z=\frac{-\sqrt{102399999999}i+1}{80000000000}
\frac{1}{80000000000} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}