x uchun yechish
\left\{\begin{matrix}x=-z+\frac{y}{z}-2\text{, }&z\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }z=0\end{matrix}\right,
y uchun yechish
y=z\left(x+z+2\right)
Baham ko'rish
Klipbordga nusxa olish
z^{2}+xz+2z+y\left(1-2\right)=0
x+2 ga z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z^{2}+xz+2z+y\left(-1\right)=0
-1 olish uchun 1 dan 2 ni ayirish.
xz+2z+y\left(-1\right)=-z^{2}
Ikkala tarafdan z^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
xz+y\left(-1\right)=-z^{2}-2z
Ikkala tarafdan 2z ni ayirish.
xz=-z^{2}-2z-y\left(-1\right)
Ikkala tarafdan y\left(-1\right) ni ayirish.
xz=-z^{2}-2z+y
1 hosil qilish uchun -1 va -1 ni ko'paytirish.
zx=y-z^{2}-2z
Tenglama standart shaklda.
\frac{zx}{z}=\frac{y-z^{2}-2z}{z}
Ikki tarafini z ga bo‘ling.
x=\frac{y-z^{2}-2z}{z}
z ga bo'lish z ga ko'paytirishni bekor qiladi.
x=-z+\frac{y}{z}-2
-z^{2}-2z+y ni z ga bo'lish.
z^{2}+xz+2z+y\left(1-2\right)=0
x+2 ga z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z^{2}+xz+2z+y\left(-1\right)=0
-1 olish uchun 1 dan 2 ni ayirish.
xz+2z+y\left(-1\right)=-z^{2}
Ikkala tarafdan z^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
2z+y\left(-1\right)=-z^{2}-xz
Ikkala tarafdan xz ni ayirish.
y\left(-1\right)=-z^{2}-xz-2z
Ikkala tarafdan 2z ni ayirish.
-y=-xz-z^{2}-2z
Tenglama standart shaklda.
\frac{-y}{-1}=-\frac{z\left(x+z+2\right)}{-1}
Ikki tarafini -1 ga bo‘ling.
y=-\frac{z\left(x+z+2\right)}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y=z\left(x+z+2\right)
-z\left(2+z+x\right) ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}