Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}-6y+7=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 7}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 7}}{2}
-6 kvadratini chiqarish.
y=\frac{-\left(-6\right)±\sqrt{36-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
y=\frac{-\left(-6\right)±\sqrt{8}}{2}
36 ni -28 ga qo'shish.
y=\frac{-\left(-6\right)±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
y=\frac{6±2\sqrt{2}}{2}
-6 ning teskarisi 6 ga teng.
y=\frac{2\sqrt{2}+6}{2}
y=\frac{6±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{2} ga qo'shish.
y=\sqrt{2}+3
6+2\sqrt{2} ni 2 ga bo'lish.
y=\frac{6-2\sqrt{2}}{2}
y=\frac{6±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{2} ni ayirish.
y=3-\sqrt{2}
6-2\sqrt{2} ni 2 ga bo'lish.
y^{2}-6y+7=\left(y-\left(\sqrt{2}+3\right)\right)\left(y-\left(3-\sqrt{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 3+\sqrt{2} ga va x_{2} uchun 3-\sqrt{2} ga bo‘ling.