Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+10y-400=0
1 daraja ko‘rsatkichini y ga hisoblang va y ni qiymatni oling.
y=\frac{-10±\sqrt{10^{2}-4\left(-400\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va -400 ni c bilan almashtiring.
y=\frac{-10±\sqrt{100-4\left(-400\right)}}{2}
10 kvadratini chiqarish.
y=\frac{-10±\sqrt{100+1600}}{2}
-4 ni -400 marotabaga ko'paytirish.
y=\frac{-10±\sqrt{1700}}{2}
100 ni 1600 ga qo'shish.
y=\frac{-10±10\sqrt{17}}{2}
1700 ning kvadrat ildizini chiqarish.
y=\frac{10\sqrt{17}-10}{2}
y=\frac{-10±10\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -10 ni 10\sqrt{17} ga qo'shish.
y=5\sqrt{17}-5
-10+10\sqrt{17} ni 2 ga bo'lish.
y=\frac{-10\sqrt{17}-10}{2}
y=\frac{-10±10\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 10\sqrt{17} ni ayirish.
y=-5\sqrt{17}-5
-10-10\sqrt{17} ni 2 ga bo'lish.
y=5\sqrt{17}-5 y=-5\sqrt{17}-5
Tenglama yechildi.
y^{2}+10y-400=0
1 daraja ko‘rsatkichini y ga hisoblang va y ni qiymatni oling.
y^{2}+10y=400
400 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
y^{2}+10y+5^{2}=400+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+10y+25=400+25
5 kvadratini chiqarish.
y^{2}+10y+25=425
400 ni 25 ga qo'shish.
\left(y+5\right)^{2}=425
y^{2}+10y+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+5\right)^{2}}=\sqrt{425}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+5=5\sqrt{17} y+5=-5\sqrt{17}
Qisqartirish.
y=5\sqrt{17}-5 y=-5\sqrt{17}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.