Omil
\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)\left(x^{16}+1\right)\left(x^{60}-x^{58}+x^{54}-x^{52}+x^{48}-x^{46}+x^{42}-x^{40}+x^{36}-x^{34}+x^{30}-x^{26}+x^{24}-x^{20}+x^{18}-x^{14}+x^{12}-x^{8}+x^{6}-x^{2}+1\right)
Baholash
x^{96}-1
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x^{48}-1\right)\left(x^{48}+1\right)
x^{96}-1 ni \left(x^{48}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{24}-1\right)\left(x^{24}+1\right)
Hisoblang: x^{48}-1. x^{48}-1 ni \left(x^{24}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{12}-1\right)\left(x^{12}+1\right)
Hisoblang: x^{24}-1. x^{24}-1 ni \left(x^{12}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{6}-1\right)\left(x^{6}+1\right)
Hisoblang: x^{12}-1. x^{12}-1 ni \left(x^{6}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{3}-1\right)\left(x^{3}+1\right)
Hisoblang: x^{6}-1. x^{6}-1 ni \left(x^{3}\right)^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x-1\right)\left(x^{2}+x+1\right)
Hisoblang: x^{3}-1. x^{3}-1 ni x^{3}-1^{3} sifatida qaytadan yozish. Kublarning farqini ushbu formula bilan hisoblash mumkin: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x+1\right)\left(x^{2}-x+1\right)
Hisoblang: x^{3}+1. x^{3}+1 ni x^{3}+1^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
Hisoblang: x^{6}+1. x^{6}+1 ni \left(x^{2}\right)^{3}+1^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{4}+1\right)\left(x^{8}-x^{4}+1\right)
Hisoblang: x^{12}+1. x^{12}+1 ni \left(x^{4}\right)^{3}+1^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{8}+1\right)\left(x^{16}-x^{8}+1\right)
Hisoblang: x^{24}+1. x^{24}+1 ni \left(x^{8}\right)^{3}+1^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{16}+1\right)\left(x^{32}-x^{16}+1\right)
Hisoblang: x^{48}+1. x^{48}+1 ni \left(x^{16}\right)^{3}+1^{3} sifatida qaytadan yozish. Kublar yigʻindisini ushbu formula bilan hisoblash mumkin: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x-1\right)\left(x^{2}-x+1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{2}+1\right)\left(x^{8}-x^{4}+1\right)\left(x^{4}+1\right)\left(x^{16}-x^{8}+1\right)\left(x^{8}+1\right)\left(x^{32}-x^{16}+1\right)\left(x^{16}+1\right)
Toʻliq ajratilgan ifodani qaytadan yozing. Quyidagi koʻphadlar faktorlanmagan, ularda hech qanday ratsional ildizlar topilmadi: x^{2}-x+1,x^{2}+x+1,x^{4}-x^{2}+1,x^{2}+1,x^{8}-x^{4}+1,x^{4}+1,x^{16}-x^{8}+1,x^{8}+1,x^{32}-x^{16}+1,x^{16}+1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}