Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{6}=6x^{3}-125
3 daraja ko‘rsatkichini 5 ga hisoblang va 125 ni qiymatni oling.
x^{6}-6x^{3}=-125
Ikkala tarafdan 6x^{3} ni ayirish.
x^{6}-6x^{3}+125=0
125 ni ikki tarafga qo’shing.
t^{2}-6t+125=0
x^{3} uchun t ni almashtiring.
t=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 125}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -6 ni va c uchun 125 ni ayiring.
t=\frac{6±\sqrt{-464}}{2}
Hisoblarni amalga oshiring.
t=3+2\sqrt{29}i t=-2\sqrt{29}i+3
t=\frac{6±\sqrt{-464}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}} x=\sqrt{5}e^{\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{-\frac{\arctan(\frac{2\sqrt{29}}{3})i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+4\pi i}{3}} x=\sqrt{5}e^{\frac{-\arctan(\frac{2\sqrt{29}}{3})i+2\pi i}{3}}
x=t^{3} boʻlganda, yechimlar har bir t uchun tenglamani yechish orqali olinadi.