Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{3}x^{3}+1=3x^{3}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{3} ga ko'paytirish.
x^{6}+1=3x^{3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 3 va 3 ni qo‘shib, 6 ni oling.
x^{6}+1-3x^{3}=0
Ikkala tarafdan 3x^{3} ni ayirish.
t^{2}-3t+1=0
x^{3} uchun t ni almashtiring.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -3 ni va c uchun 1 ni ayiring.
t=\frac{3±\sqrt{5}}{2}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
t=\frac{3±\sqrt{5}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} boʻlganda, yechimlar har bir t uchun tenglamani yechish orqali olinadi.
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
x qiymati 0 teng bo‘lmaydi.
x^{3}x^{3}+1=3x^{3}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x^{3} ga ko'paytirish.
x^{6}+1=3x^{3}
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 3 va 3 ni qo‘shib, 6 ni oling.
x^{6}+1-3x^{3}=0
Ikkala tarafdan 3x^{3} ni ayirish.
t^{2}-3t+1=0
x^{3} uchun t ni almashtiring.
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 1 ni, b uchun -3 ni va c uchun 1 ni ayiring.
t=\frac{3±\sqrt{5}}{2}
Hisoblarni amalga oshiring.
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
t=\frac{3±\sqrt{5}}{2} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3} boʻlganda, yechimlar har bir t uchun x=\sqrt[3]{t} hisoblanishi orqali olinadi.