Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ni olish uchun x^{2} va -x^{2}\times 2 ni birlashtirish.
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
-2x^{2}+1=2x^{2}+3x-1
3x ni olish uchun 4x va -x ni birlashtirish.
-2x^{2}+1-2x^{2}=3x-1
Ikkala tarafdan 2x^{2} ni ayirish.
-4x^{2}+1=3x-1
-4x^{2} ni olish uchun -2x^{2} va -2x^{2} ni birlashtirish.
-4x^{2}+1-3x=-1
Ikkala tarafdan 3x ni ayirish.
-4x^{2}+1-3x+1=0
1 ni ikki tarafga qo’shing.
-4x^{2}+2-3x=0
2 olish uchun 1 va 1'ni qo'shing.
-4x^{2}-3x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, -3 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9+16\times 2}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2\left(-4\right)}
16 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{41}}{2\left(-4\right)}
9 ni 32 ga qo'shish.
x=\frac{3±\sqrt{41}}{2\left(-4\right)}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{41}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{\sqrt{41}+3}{-8}
x=\frac{3±\sqrt{41}}{-8} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{41} ga qo'shish.
x=\frac{-\sqrt{41}-3}{8}
3+\sqrt{41} ni -8 ga bo'lish.
x=\frac{3-\sqrt{41}}{-8}
x=\frac{3±\sqrt{41}}{-8} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}-3}{8}
3-\sqrt{41} ni -8 ga bo'lish.
x=\frac{-\sqrt{41}-3}{8} x=\frac{\sqrt{41}-3}{8}
Tenglama yechildi.
x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ni olish uchun x^{2} va -x^{2}\times 2 ni birlashtirish.
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ni olish uchun -x^{2} va -x^{2} ni birlashtirish.
-2x^{2}+1=2x^{2}+3x-1
3x ni olish uchun 4x va -x ni birlashtirish.
-2x^{2}+1-2x^{2}=3x-1
Ikkala tarafdan 2x^{2} ni ayirish.
-4x^{2}+1=3x-1
-4x^{2} ni olish uchun -2x^{2} va -2x^{2} ni birlashtirish.
-4x^{2}+1-3x=-1
Ikkala tarafdan 3x ni ayirish.
-4x^{2}-3x=-1-1
Ikkala tarafdan 1 ni ayirish.
-4x^{2}-3x=-2
-2 olish uchun -1 dan 1 ni ayirish.
\frac{-4x^{2}-3x}{-4}=-\frac{2}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\left(-\frac{3}{-4}\right)x=-\frac{2}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{4}x=-\frac{2}{-4}
-3 ni -4 ga bo'lish.
x^{2}+\frac{3}{4}x=\frac{1}{2}
\frac{-2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(\frac{3}{8}\right)^{2}
\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{8} olish uchun. Keyin, \frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{8} kvadratini chiqarish.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{8}\right)^{2}=\frac{41}{64}
x^{2}+\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{8}=\frac{\sqrt{41}}{8} x+\frac{3}{8}=-\frac{\sqrt{41}}{8}
Qisqartirish.
x=\frac{\sqrt{41}-3}{8} x=\frac{-\sqrt{41}-3}{8}
Tenglamaning ikkala tarafidan \frac{3}{8} ni ayirish.