Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-95x+2100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\times 2100}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -95 ni b va 2100 ni c bilan almashtiring.
x=\frac{-\left(-95\right)±\sqrt{9025-4\times 2100}}{2}
-95 kvadratini chiqarish.
x=\frac{-\left(-95\right)±\sqrt{9025-8400}}{2}
-4 ni 2100 marotabaga ko'paytirish.
x=\frac{-\left(-95\right)±\sqrt{625}}{2}
9025 ni -8400 ga qo'shish.
x=\frac{-\left(-95\right)±25}{2}
625 ning kvadrat ildizini chiqarish.
x=\frac{95±25}{2}
-95 ning teskarisi 95 ga teng.
x=\frac{120}{2}
x=\frac{95±25}{2} tenglamasini yeching, bunda ± musbat. 95 ni 25 ga qo'shish.
x=60
120 ni 2 ga bo'lish.
x=\frac{70}{2}
x=\frac{95±25}{2} tenglamasini yeching, bunda ± manfiy. 95 dan 25 ni ayirish.
x=35
70 ni 2 ga bo'lish.
x=60 x=35
Tenglama yechildi.
x^{2}-95x+2100=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-95x+2100-2100=-2100
Tenglamaning ikkala tarafidan 2100 ni ayirish.
x^{2}-95x=-2100
O‘zidan 2100 ayirilsa 0 qoladi.
x^{2}-95x+\left(-\frac{95}{2}\right)^{2}=-2100+\left(-\frac{95}{2}\right)^{2}
-95 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{95}{2} olish uchun. Keyin, -\frac{95}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-95x+\frac{9025}{4}=-2100+\frac{9025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{95}{2} kvadratini chiqarish.
x^{2}-95x+\frac{9025}{4}=\frac{625}{4}
-2100 ni \frac{9025}{4} ga qo'shish.
\left(x-\frac{95}{2}\right)^{2}=\frac{625}{4}
x^{2}-95x+\frac{9025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{95}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{95}{2}=\frac{25}{2} x-\frac{95}{2}=-\frac{25}{2}
Qisqartirish.
x=60 x=35
\frac{95}{2} ni tenglamaning ikkala tarafiga qo'shish.