x uchun yechish
x=35
x=60
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-95x+2100=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-95\right)±\sqrt{\left(-95\right)^{2}-4\times 2100}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -95 ni b va 2100 ni c bilan almashtiring.
x=\frac{-\left(-95\right)±\sqrt{9025-4\times 2100}}{2}
-95 kvadratini chiqarish.
x=\frac{-\left(-95\right)±\sqrt{9025-8400}}{2}
-4 ni 2100 marotabaga ko'paytirish.
x=\frac{-\left(-95\right)±\sqrt{625}}{2}
9025 ni -8400 ga qo'shish.
x=\frac{-\left(-95\right)±25}{2}
625 ning kvadrat ildizini chiqarish.
x=\frac{95±25}{2}
-95 ning teskarisi 95 ga teng.
x=\frac{120}{2}
x=\frac{95±25}{2} tenglamasini yeching, bunda ± musbat. 95 ni 25 ga qo'shish.
x=60
120 ni 2 ga bo'lish.
x=\frac{70}{2}
x=\frac{95±25}{2} tenglamasini yeching, bunda ± manfiy. 95 dan 25 ni ayirish.
x=35
70 ni 2 ga bo'lish.
x=60 x=35
Tenglama yechildi.
x^{2}-95x+2100=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-95x+2100-2100=-2100
Tenglamaning ikkala tarafidan 2100 ni ayirish.
x^{2}-95x=-2100
O‘zidan 2100 ayirilsa 0 qoladi.
x^{2}-95x+\left(-\frac{95}{2}\right)^{2}=-2100+\left(-\frac{95}{2}\right)^{2}
-95 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{95}{2} olish uchun. Keyin, -\frac{95}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-95x+\frac{9025}{4}=-2100+\frac{9025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{95}{2} kvadratini chiqarish.
x^{2}-95x+\frac{9025}{4}=\frac{625}{4}
-2100 ni \frac{9025}{4} ga qo'shish.
\left(x-\frac{95}{2}\right)^{2}=\frac{625}{4}
x^{2}-95x+\frac{9025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{95}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{95}{2}=\frac{25}{2} x-\frac{95}{2}=-\frac{25}{2}
Qisqartirish.
x=60 x=35
\frac{95}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}