Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-8x+2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{56}}{2}
64 ni -8 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{14}}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{2\sqrt{14}+8}{2}
x=\frac{8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}+4
8+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{8-2\sqrt{14}}{2}
x=\frac{8±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2\sqrt{14} ni ayirish.
x=4-\sqrt{14}
8-2\sqrt{14} ni 2 ga bo'lish.
x^{2}-8x+2=\left(x-\left(\sqrt{14}+4\right)\right)\left(x-\left(4-\sqrt{14}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 4+\sqrt{14} ga va x_{2} uchun 4-\sqrt{14} ga bo‘ling.