x uchun yechish
x=2\sqrt{6}+3\approx 7,898979486
x=3-2\sqrt{6}\approx -1,898979486
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-6x-11=4
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-6x-11-4=4-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}-6x-11-4=0
O‘zidan 4 ayirilsa 0 qoladi.
x^{2}-6x-15=0
-11 dan 4 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-15\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -6 ni b va -15 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-15\right)}}{2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+60}}{2}
-4 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{96}}{2}
36 ni 60 ga qo'shish.
x=\frac{-\left(-6\right)±4\sqrt{6}}{2}
96 ning kvadrat ildizini chiqarish.
x=\frac{6±4\sqrt{6}}{2}
-6 ning teskarisi 6 ga teng.
x=\frac{4\sqrt{6}+6}{2}
x=\frac{6±4\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. 6 ni 4\sqrt{6} ga qo'shish.
x=2\sqrt{6}+3
6+4\sqrt{6} ni 2 ga bo'lish.
x=\frac{6-4\sqrt{6}}{2}
x=\frac{6±4\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. 6 dan 4\sqrt{6} ni ayirish.
x=3-2\sqrt{6}
6-4\sqrt{6} ni 2 ga bo'lish.
x=2\sqrt{6}+3 x=3-2\sqrt{6}
Tenglama yechildi.
x^{2}-6x-11=4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-6x-11-\left(-11\right)=4-\left(-11\right)
11 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-6x=4-\left(-11\right)
O‘zidan -11 ayirilsa 0 qoladi.
x^{2}-6x=15
4 dan -11 ni ayirish.
x^{2}-6x+\left(-3\right)^{2}=15+\left(-3\right)^{2}
-6 ni bo‘lish, x shartining koeffitsienti, 2 ga -3 olish uchun. Keyin, -3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-6x+9=15+9
-3 kvadratini chiqarish.
x^{2}-6x+9=24
15 ni 9 ga qo'shish.
\left(x-3\right)^{2}=24
x^{2}-6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-3\right)^{2}}=\sqrt{24}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-3=2\sqrt{6} x-3=-2\sqrt{6}
Qisqartirish.
x=2\sqrt{6}+3 x=3-2\sqrt{6}
3 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}