x uchun yechish (complex solution)
x=\frac{5+\sqrt{3}i}{2}\approx 2,5+0,866025404i
x=\frac{-\sqrt{3}i+5}{2}\approx 2,5-0,866025404i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-5x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-3}}{2}
25 ni -28 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{3}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{3}i}{2}
x=\frac{5±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+5}{2}
x=\frac{5±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{3} ni ayirish.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
Tenglama yechildi.
x^{2}-5x+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-5x+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}-5x=-7
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-7+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{3}{4}
-7 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{3}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{3}i}{2} x-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}