Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-5x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 7}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-3}}{2}
25 ni -28 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{3}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{3}i}{2}
x=\frac{5±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+5}{2}
x=\frac{5±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{3} ni ayirish.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
Tenglama yechildi.
x^{2}-5x+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-5x+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
x^{2}-5x=-7
O‘zidan 7 ayirilsa 0 qoladi.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-7+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-7+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{3}{4}
-7 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{3}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{3}i}{2} x-\frac{5}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.