Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-5x+625=8
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-5x+625-8=8-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x^{2}-5x+625-8=0
O‘zidan 8 ayirilsa 0 qoladi.
x^{2}-5x+617=0
625 dan 8 ni ayirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 617}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 617 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 617}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-2468}}{2}
-4 ni 617 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-2443}}{2}
25 ni -2468 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{2443}i}{2}
-2443 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{2443}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{2443}i}{2}
x=\frac{5±\sqrt{2443}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{2443} ga qo'shish.
x=\frac{-\sqrt{2443}i+5}{2}
x=\frac{5±\sqrt{2443}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{2443} ni ayirish.
x=\frac{5+\sqrt{2443}i}{2} x=\frac{-\sqrt{2443}i+5}{2}
Tenglama yechildi.
x^{2}-5x+625=8
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-5x+625-625=8-625
Tenglamaning ikkala tarafidan 625 ni ayirish.
x^{2}-5x=8-625
O‘zidan 625 ayirilsa 0 qoladi.
x^{2}-5x=-617
8 dan 625 ni ayirish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-617+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-617+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{2443}{4}
-617 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{2443}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{2443}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{2443}i}{2} x-\frac{5}{2}=-\frac{\sqrt{2443}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{2443}i}{2} x=\frac{-\sqrt{2443}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.