Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-9\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{52}}{2}
16 ni 36 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{13}}{2}
52 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{13}}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{2\sqrt{13}+4}{2}
x=\frac{4±2\sqrt{13}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{13} ga qo'shish.
x=\sqrt{13}+2
4+2\sqrt{13} ni 2 ga bo'lish.
x=\frac{4-2\sqrt{13}}{2}
x=\frac{4±2\sqrt{13}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{13} ni ayirish.
x=2-\sqrt{13}
4-2\sqrt{13} ni 2 ga bo'lish.
x=\sqrt{13}+2 x=2-\sqrt{13}
Tenglama yechildi.
x^{2}-4x-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-4x-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-4x=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
x^{2}-4x=9
0 dan -9 ni ayirish.
x^{2}-4x+\left(-2\right)^{2}=9+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=9+4
-2 kvadratini chiqarish.
x^{2}-4x+4=13
9 ni 4 ga qo'shish.
\left(x-2\right)^{2}=13
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\sqrt{13} x-2=-\sqrt{13}
Qisqartirish.
x=\sqrt{13}+2 x=2-\sqrt{13}
2 ni tenglamaning ikkala tarafiga qo'shish.