Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x-5=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
a+b=-4 ab=-5
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-4x-5 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-5 b=1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(x-5\right)\left(x+1\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=5 x=-1
Tenglamani yechish uchun x-5=0 va x+1=0 ni yeching.
x^{2}-4x-5=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
a+b=-4 ab=1\left(-5\right)=-5
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx-5 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
a=-5 b=1
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. Faqat bundan juftlik tizim yechimidir.
\left(x^{2}-5x\right)+\left(x-5\right)
x^{2}-4x-5 ni \left(x^{2}-5x\right)+\left(x-5\right) sifatida qaytadan yozish.
x\left(x-5\right)+x-5
x^{2}-5x ichida x ni ajrating.
\left(x-5\right)\left(x+1\right)
Distributiv funktsiyasidan foydalangan holda x-5 umumiy terminini chiqaring.
x=5 x=-1
Tenglamani yechish uchun x-5=0 va x+1=0 ni yeching.
x^{2}-4x-5=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 ni 20 ga qo'shish.
x=\frac{-\left(-4\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
x=\frac{4±6}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{10}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± musbat. 4 ni 6 ga qo'shish.
x=5
10 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 6 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=5 x=-1
Tenglama yechildi.
x^{2}-4x-5=0
0 hosil qilish uchun 0 va 8 ni ko'paytirish.
x^{2}-4x=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=5+4
-2 kvadratini chiqarish.
x^{2}-4x+4=9
5 ni 4 ga qo'shish.
\left(x-2\right)^{2}=9
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=3 x-2=-3
Qisqartirish.
x=5 x=-1
2 ni tenglamaning ikkala tarafiga qo'shish.