Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4x-16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-16\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -16 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-16\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{80}}{2}
16 ni 64 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{5}}{2}
80 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{5}}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{4\sqrt{5}+4}{2}
x=\frac{4±4\sqrt{5}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{5} ga qo'shish.
x=2\sqrt{5}+2
4+4\sqrt{5} ni 2 ga bo'lish.
x=\frac{4-4\sqrt{5}}{2}
x=\frac{4±4\sqrt{5}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{5} ni ayirish.
x=2-2\sqrt{5}
4-4\sqrt{5} ni 2 ga bo'lish.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Tenglama yechildi.
x^{2}-4x-16=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-4x-16-\left(-16\right)=-\left(-16\right)
16 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-4x=-\left(-16\right)
O‘zidan -16 ayirilsa 0 qoladi.
x^{2}-4x=16
0 dan -16 ni ayirish.
x^{2}-4x+\left(-2\right)^{2}=16+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=16+4
-2 kvadratini chiqarish.
x^{2}-4x+4=20
16 ni 4 ga qo'shish.
\left(x-2\right)^{2}=20
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{20}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=2\sqrt{5} x-2=-2\sqrt{5}
Qisqartirish.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
2 ni tenglamaning ikkala tarafiga qo'shish.