Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-42x+45=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 45}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 45}}{2}
-42 kvadratini chiqarish.
x=\frac{-\left(-42\right)±\sqrt{1764-180}}{2}
-4 ni 45 marotabaga ko'paytirish.
x=\frac{-\left(-42\right)±\sqrt{1584}}{2}
1764 ni -180 ga qo'shish.
x=\frac{-\left(-42\right)±12\sqrt{11}}{2}
1584 ning kvadrat ildizini chiqarish.
x=\frac{42±12\sqrt{11}}{2}
-42 ning teskarisi 42 ga teng.
x=\frac{12\sqrt{11}+42}{2}
x=\frac{42±12\sqrt{11}}{2} tenglamasini yeching, bunda ± musbat. 42 ni 12\sqrt{11} ga qo'shish.
x=6\sqrt{11}+21
42+12\sqrt{11} ni 2 ga bo'lish.
x=\frac{42-12\sqrt{11}}{2}
x=\frac{42±12\sqrt{11}}{2} tenglamasini yeching, bunda ± manfiy. 42 dan 12\sqrt{11} ni ayirish.
x=21-6\sqrt{11}
42-12\sqrt{11} ni 2 ga bo'lish.
x^{2}-42x+45=\left(x-\left(6\sqrt{11}+21\right)\right)\left(x-\left(21-6\sqrt{11}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 21+6\sqrt{11} ga va x_{2} uchun 21-6\sqrt{11} ga bo‘ling.