Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-37x+259=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}-4\times 259}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -37 ni b va 259 ni c bilan almashtiring.
x=\frac{-\left(-37\right)±\sqrt{1369-4\times 259}}{2}
-37 kvadratini chiqarish.
x=\frac{-\left(-37\right)±\sqrt{1369-1036}}{2}
-4 ni 259 marotabaga ko'paytirish.
x=\frac{-\left(-37\right)±\sqrt{333}}{2}
1369 ni -1036 ga qo'shish.
x=\frac{-\left(-37\right)±3\sqrt{37}}{2}
333 ning kvadrat ildizini chiqarish.
x=\frac{37±3\sqrt{37}}{2}
-37 ning teskarisi 37 ga teng.
x=\frac{3\sqrt{37}+37}{2}
x=\frac{37±3\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. 37 ni 3\sqrt{37} ga qo'shish.
x=\frac{37-3\sqrt{37}}{2}
x=\frac{37±3\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. 37 dan 3\sqrt{37} ni ayirish.
x=\frac{3\sqrt{37}+37}{2} x=\frac{37-3\sqrt{37}}{2}
Tenglama yechildi.
x^{2}-37x+259=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-37x+259-259=-259
Tenglamaning ikkala tarafidan 259 ni ayirish.
x^{2}-37x=-259
O‘zidan 259 ayirilsa 0 qoladi.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=-259+\left(-\frac{37}{2}\right)^{2}
-37 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{37}{2} olish uchun. Keyin, -\frac{37}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-37x+\frac{1369}{4}=-259+\frac{1369}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{37}{2} kvadratini chiqarish.
x^{2}-37x+\frac{1369}{4}=\frac{333}{4}
-259 ni \frac{1369}{4} ga qo'shish.
\left(x-\frac{37}{2}\right)^{2}=\frac{333}{4}
x^{2}-37x+\frac{1369}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{\frac{333}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{37}{2}=\frac{3\sqrt{37}}{2} x-\frac{37}{2}=-\frac{3\sqrt{37}}{2}
Qisqartirish.
x=\frac{3\sqrt{37}+37}{2} x=\frac{37-3\sqrt{37}}{2}
\frac{37}{2} ni tenglamaning ikkala tarafiga qo'shish.