Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-34-16x=0
Ikkala tarafdan 16x ni ayirish.
x^{2}-16x-34=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-34\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va -34 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\left(-34\right)}}{2}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256+136}}{2}
-4 ni -34 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{392}}{2}
256 ni 136 ga qo'shish.
x=\frac{-\left(-16\right)±14\sqrt{2}}{2}
392 ning kvadrat ildizini chiqarish.
x=\frac{16±14\sqrt{2}}{2}
-16 ning teskarisi 16 ga teng.
x=\frac{14\sqrt{2}+16}{2}
x=\frac{16±14\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 14\sqrt{2} ga qo'shish.
x=7\sqrt{2}+8
16+14\sqrt{2} ni 2 ga bo'lish.
x=\frac{16-14\sqrt{2}}{2}
x=\frac{16±14\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 14\sqrt{2} ni ayirish.
x=8-7\sqrt{2}
16-14\sqrt{2} ni 2 ga bo'lish.
x=7\sqrt{2}+8 x=8-7\sqrt{2}
Tenglama yechildi.
x^{2}-34-16x=0
Ikkala tarafdan 16x ni ayirish.
x^{2}-16x=34
34 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-16x+\left(-8\right)^{2}=34+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=34+64
-8 kvadratini chiqarish.
x^{2}-16x+64=98
34 ni 64 ga qo'shish.
\left(x-8\right)^{2}=98
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{98}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=7\sqrt{2} x-8=-7\sqrt{2}
Qisqartirish.
x=7\sqrt{2}+8 x=8-7\sqrt{2}
8 ni tenglamaning ikkala tarafiga qo'shish.