Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-32x+45=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 45}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -32 ni b va 45 ni c bilan almashtiring.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 45}}{2}
-32 kvadratini chiqarish.
x=\frac{-\left(-32\right)±\sqrt{1024-180}}{2}
-4 ni 45 marotabaga ko'paytirish.
x=\frac{-\left(-32\right)±\sqrt{844}}{2}
1024 ni -180 ga qo'shish.
x=\frac{-\left(-32\right)±2\sqrt{211}}{2}
844 ning kvadrat ildizini chiqarish.
x=\frac{32±2\sqrt{211}}{2}
-32 ning teskarisi 32 ga teng.
x=\frac{2\sqrt{211}+32}{2}
x=\frac{32±2\sqrt{211}}{2} tenglamasini yeching, bunda ± musbat. 32 ni 2\sqrt{211} ga qo'shish.
x=\sqrt{211}+16
32+2\sqrt{211} ni 2 ga bo'lish.
x=\frac{32-2\sqrt{211}}{2}
x=\frac{32±2\sqrt{211}}{2} tenglamasini yeching, bunda ± manfiy. 32 dan 2\sqrt{211} ni ayirish.
x=16-\sqrt{211}
32-2\sqrt{211} ni 2 ga bo'lish.
x=\sqrt{211}+16 x=16-\sqrt{211}
Tenglama yechildi.
x^{2}-32x+45=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-32x+45-45=-45
Tenglamaning ikkala tarafidan 45 ni ayirish.
x^{2}-32x=-45
O‘zidan 45 ayirilsa 0 qoladi.
x^{2}-32x+\left(-16\right)^{2}=-45+\left(-16\right)^{2}
-32 ni bo‘lish, x shartining koeffitsienti, 2 ga -16 olish uchun. Keyin, -16 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-32x+256=-45+256
-16 kvadratini chiqarish.
x^{2}-32x+256=211
-45 ni 256 ga qo'shish.
\left(x-16\right)^{2}=211
x^{2}-32x+256 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-16\right)^{2}}=\sqrt{211}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-16=\sqrt{211} x-16=-\sqrt{211}
Qisqartirish.
x=\sqrt{211}+16 x=16-\sqrt{211}
16 ni tenglamaning ikkala tarafiga qo'shish.