Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-25x-35=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-35\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-35\right)}}{2}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625+140}}{2}
-4 ni -35 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{765}}{2}
625 ni 140 ga qo'shish.
x=\frac{-\left(-25\right)±3\sqrt{85}}{2}
765 ning kvadrat ildizini chiqarish.
x=\frac{25±3\sqrt{85}}{2}
-25 ning teskarisi 25 ga teng.
x=\frac{3\sqrt{85}+25}{2}
x=\frac{25±3\sqrt{85}}{2} tenglamasini yeching, bunda ± musbat. 25 ni 3\sqrt{85} ga qo'shish.
x=\frac{25-3\sqrt{85}}{2}
x=\frac{25±3\sqrt{85}}{2} tenglamasini yeching, bunda ± manfiy. 25 dan 3\sqrt{85} ni ayirish.
x^{2}-25x-35=\left(x-\frac{3\sqrt{85}+25}{2}\right)\left(x-\frac{25-3\sqrt{85}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{25+3\sqrt{85}}{2} ga va x_{2} uchun \frac{25-3\sqrt{85}}{2} ga bo‘ling.