Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-20x+570=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 570}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -20 ni b va 570 ni c bilan almashtiring.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 570}}{2}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400-2280}}{2}
-4 ni 570 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{-1880}}{2}
400 ni -2280 ga qo'shish.
x=\frac{-\left(-20\right)±2\sqrt{470}i}{2}
-1880 ning kvadrat ildizini chiqarish.
x=\frac{20±2\sqrt{470}i}{2}
-20 ning teskarisi 20 ga teng.
x=\frac{20+2\sqrt{470}i}{2}
x=\frac{20±2\sqrt{470}i}{2} tenglamasini yeching, bunda ± musbat. 20 ni 2i\sqrt{470} ga qo'shish.
x=10+\sqrt{470}i
20+2i\sqrt{470} ni 2 ga bo'lish.
x=\frac{-2\sqrt{470}i+20}{2}
x=\frac{20±2\sqrt{470}i}{2} tenglamasini yeching, bunda ± manfiy. 20 dan 2i\sqrt{470} ni ayirish.
x=-\sqrt{470}i+10
20-2i\sqrt{470} ni 2 ga bo'lish.
x=10+\sqrt{470}i x=-\sqrt{470}i+10
Tenglama yechildi.
x^{2}-20x+570=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-20x+570-570=-570
Tenglamaning ikkala tarafidan 570 ni ayirish.
x^{2}-20x=-570
O‘zidan 570 ayirilsa 0 qoladi.
x^{2}-20x+\left(-10\right)^{2}=-570+\left(-10\right)^{2}
-20 ni bo‘lish, x shartining koeffitsienti, 2 ga -10 olish uchun. Keyin, -10 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-20x+100=-570+100
-10 kvadratini chiqarish.
x^{2}-20x+100=-470
-570 ni 100 ga qo'shish.
\left(x-10\right)^{2}=-470
x^{2}-20x+100 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-10\right)^{2}}=\sqrt{-470}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-10=\sqrt{470}i x-10=-\sqrt{470}i
Qisqartirish.
x=10+\sqrt{470}i x=-\sqrt{470}i+10
10 ni tenglamaning ikkala tarafiga qo'shish.