Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-20-55x=0
Ikkala tarafdan 55x ni ayirish.
x^{2}-55x-20=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-20\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -55 ni b va -20 ni c bilan almashtiring.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-20\right)}}{2}
-55 kvadratini chiqarish.
x=\frac{-\left(-55\right)±\sqrt{3025+80}}{2}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-\left(-55\right)±\sqrt{3105}}{2}
3025 ni 80 ga qo'shish.
x=\frac{-\left(-55\right)±3\sqrt{345}}{2}
3105 ning kvadrat ildizini chiqarish.
x=\frac{55±3\sqrt{345}}{2}
-55 ning teskarisi 55 ga teng.
x=\frac{3\sqrt{345}+55}{2}
x=\frac{55±3\sqrt{345}}{2} tenglamasini yeching, bunda ± musbat. 55 ni 3\sqrt{345} ga qo'shish.
x=\frac{55-3\sqrt{345}}{2}
x=\frac{55±3\sqrt{345}}{2} tenglamasini yeching, bunda ± manfiy. 55 dan 3\sqrt{345} ni ayirish.
x=\frac{3\sqrt{345}+55}{2} x=\frac{55-3\sqrt{345}}{2}
Tenglama yechildi.
x^{2}-20-55x=0
Ikkala tarafdan 55x ni ayirish.
x^{2}-55x=20
20 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-55x+\left(-\frac{55}{2}\right)^{2}=20+\left(-\frac{55}{2}\right)^{2}
-55 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{55}{2} olish uchun. Keyin, -\frac{55}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-55x+\frac{3025}{4}=20+\frac{3025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{55}{2} kvadratini chiqarish.
x^{2}-55x+\frac{3025}{4}=\frac{3105}{4}
20 ni \frac{3025}{4} ga qo'shish.
\left(x-\frac{55}{2}\right)^{2}=\frac{3105}{4}
x^{2}-55x+\frac{3025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{55}{2}\right)^{2}}=\sqrt{\frac{3105}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{55}{2}=\frac{3\sqrt{345}}{2} x-\frac{55}{2}=-\frac{3\sqrt{345}}{2}
Qisqartirish.
x=\frac{3\sqrt{345}+55}{2} x=\frac{55-3\sqrt{345}}{2}
\frac{55}{2} ni tenglamaning ikkala tarafiga qo'shish.