x uchun yechish
x = \frac{3 \sqrt{345} + 55}{2} \approx 55,361263432
x=\frac{55-3\sqrt{345}}{2}\approx -0,361263432
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-20-55x=0
Ikkala tarafdan 55x ni ayirish.
x^{2}-55x-20=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-20\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -55 ni b va -20 ni c bilan almashtiring.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-20\right)}}{2}
-55 kvadratini chiqarish.
x=\frac{-\left(-55\right)±\sqrt{3025+80}}{2}
-4 ni -20 marotabaga ko'paytirish.
x=\frac{-\left(-55\right)±\sqrt{3105}}{2}
3025 ni 80 ga qo'shish.
x=\frac{-\left(-55\right)±3\sqrt{345}}{2}
3105 ning kvadrat ildizini chiqarish.
x=\frac{55±3\sqrt{345}}{2}
-55 ning teskarisi 55 ga teng.
x=\frac{3\sqrt{345}+55}{2}
x=\frac{55±3\sqrt{345}}{2} tenglamasini yeching, bunda ± musbat. 55 ni 3\sqrt{345} ga qo'shish.
x=\frac{55-3\sqrt{345}}{2}
x=\frac{55±3\sqrt{345}}{2} tenglamasini yeching, bunda ± manfiy. 55 dan 3\sqrt{345} ni ayirish.
x=\frac{3\sqrt{345}+55}{2} x=\frac{55-3\sqrt{345}}{2}
Tenglama yechildi.
x^{2}-20-55x=0
Ikkala tarafdan 55x ni ayirish.
x^{2}-55x=20
20 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}-55x+\left(-\frac{55}{2}\right)^{2}=20+\left(-\frac{55}{2}\right)^{2}
-55 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{55}{2} olish uchun. Keyin, -\frac{55}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-55x+\frac{3025}{4}=20+\frac{3025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{55}{2} kvadratini chiqarish.
x^{2}-55x+\frac{3025}{4}=\frac{3105}{4}
20 ni \frac{3025}{4} ga qo'shish.
\left(x-\frac{55}{2}\right)^{2}=\frac{3105}{4}
x^{2}-55x+\frac{3025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{55}{2}\right)^{2}}=\sqrt{\frac{3105}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{55}{2}=\frac{3\sqrt{345}}{2} x-\frac{55}{2}=-\frac{3\sqrt{345}}{2}
Qisqartirish.
x=\frac{3\sqrt{345}+55}{2} x=\frac{55-3\sqrt{345}}{2}
\frac{55}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}