Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-15x+7=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 7}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 7}}{2}
-15 kvadratini chiqarish.
x=\frac{-\left(-15\right)±\sqrt{225-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-15\right)±\sqrt{197}}{2}
225 ni -28 ga qo'shish.
x=\frac{15±\sqrt{197}}{2}
-15 ning teskarisi 15 ga teng.
x=\frac{\sqrt{197}+15}{2}
x=\frac{15±\sqrt{197}}{2} tenglamasini yeching, bunda ± musbat. 15 ni \sqrt{197} ga qo'shish.
x=\frac{15-\sqrt{197}}{2}
x=\frac{15±\sqrt{197}}{2} tenglamasini yeching, bunda ± manfiy. 15 dan \sqrt{197} ni ayirish.
x^{2}-15x+7=\left(x-\frac{\sqrt{197}+15}{2}\right)\left(x-\frac{15-\sqrt{197}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{15+\sqrt{197}}{2} ga va x_{2} uchun \frac{15-\sqrt{197}}{2} ga bo‘ling.