x uchun yechish
x = \frac{\sqrt{30}}{3} \approx 1,825741858
x = -\frac{\sqrt{30}}{3} \approx -1,825741858
Grafik
Baham ko'rish
Klipbordga nusxa olish
-12x^{2}+40=0
-12x^{2} ni olish uchun x^{2} va -13x^{2} ni birlashtirish.
-12x^{2}=-40
Ikkala tarafdan 40 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-40}{-12}
Ikki tarafini -12 ga bo‘ling.
x^{2}=\frac{10}{3}
\frac{-40}{-12} ulushini -4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{30}}{3} x=-\frac{\sqrt{30}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
-12x^{2}+40=0
-12x^{2} ni olish uchun x^{2} va -13x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\left(-12\right)\times 40}}{2\left(-12\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -12 ni a, 0 ni b va 40 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-12\right)\times 40}}{2\left(-12\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{48\times 40}}{2\left(-12\right)}
-4 ni -12 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1920}}{2\left(-12\right)}
48 ni 40 marotabaga ko'paytirish.
x=\frac{0±8\sqrt{30}}{2\left(-12\right)}
1920 ning kvadrat ildizini chiqarish.
x=\frac{0±8\sqrt{30}}{-24}
2 ni -12 marotabaga ko'paytirish.
x=-\frac{\sqrt{30}}{3}
x=\frac{0±8\sqrt{30}}{-24} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{30}}{3}
x=\frac{0±8\sqrt{30}}{-24} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{30}}{3} x=\frac{\sqrt{30}}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}