x uchun yechish
x=\sqrt{39}+6\approx 12,244997998
x=6-\sqrt{39}\approx -0,244997998
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-12x-5=-2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-12x-5-\left(-2\right)=-2-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-12x-5-\left(-2\right)=0
O‘zidan -2 ayirilsa 0 qoladi.
x^{2}-12x-3=0
-5 dan -2 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{156}}{2}
144 ni 12 ga qo'shish.
x=\frac{-\left(-12\right)±2\sqrt{39}}{2}
156 ning kvadrat ildizini chiqarish.
x=\frac{12±2\sqrt{39}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{2\sqrt{39}+12}{2}
x=\frac{12±2\sqrt{39}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2\sqrt{39} ga qo'shish.
x=\sqrt{39}+6
12+2\sqrt{39} ni 2 ga bo'lish.
x=\frac{12-2\sqrt{39}}{2}
x=\frac{12±2\sqrt{39}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 2\sqrt{39} ni ayirish.
x=6-\sqrt{39}
12-2\sqrt{39} ni 2 ga bo'lish.
x=\sqrt{39}+6 x=6-\sqrt{39}
Tenglama yechildi.
x^{2}-12x-5=-2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-12x-5-\left(-5\right)=-2-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-12x=-2-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}-12x=3
-2 dan -5 ni ayirish.
x^{2}-12x+\left(-6\right)^{2}=3+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=3+36
-6 kvadratini chiqarish.
x^{2}-12x+36=39
3 ni 36 ga qo'shish.
\left(x-6\right)^{2}=39
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{39}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=\sqrt{39} x-6=-\sqrt{39}
Qisqartirish.
x=\sqrt{39}+6 x=6-\sqrt{39}
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}