Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-12x-5=-2
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}-12x-5-\left(-2\right)=-2-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-12x-5-\left(-2\right)=0
O‘zidan -2 ayirilsa 0 qoladi.
x^{2}-12x-3=0
-5 dan -2 ni ayirish.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-3\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -12 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-3\right)}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+12}}{2}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{156}}{2}
144 ni 12 ga qo'shish.
x=\frac{-\left(-12\right)±2\sqrt{39}}{2}
156 ning kvadrat ildizini chiqarish.
x=\frac{12±2\sqrt{39}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{2\sqrt{39}+12}{2}
x=\frac{12±2\sqrt{39}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 2\sqrt{39} ga qo'shish.
x=\sqrt{39}+6
12+2\sqrt{39} ni 2 ga bo'lish.
x=\frac{12-2\sqrt{39}}{2}
x=\frac{12±2\sqrt{39}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 2\sqrt{39} ni ayirish.
x=6-\sqrt{39}
12-2\sqrt{39} ni 2 ga bo'lish.
x=\sqrt{39}+6 x=6-\sqrt{39}
Tenglama yechildi.
x^{2}-12x-5=-2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-12x-5-\left(-5\right)=-2-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-12x=-2-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}-12x=3
-2 dan -5 ni ayirish.
x^{2}-12x+\left(-6\right)^{2}=3+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=3+36
-6 kvadratini chiqarish.
x^{2}-12x+36=39
3 ni 36 ga qo'shish.
\left(x-6\right)^{2}=39
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{39}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=\sqrt{39} x-6=-\sqrt{39}
Qisqartirish.
x=\sqrt{39}+6 x=6-\sqrt{39}
6 ni tenglamaning ikkala tarafiga qo'shish.