Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-12x-112=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-112\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-112\right)}}{2}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144+448}}{2}
-4 ni -112 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{592}}{2}
144 ni 448 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{37}}{2}
592 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{37}}{2}
-12 ning teskarisi 12 ga teng.
x=\frac{4\sqrt{37}+12}{2}
x=\frac{12±4\sqrt{37}}{2} tenglamasini yeching, bunda ± musbat. 12 ni 4\sqrt{37} ga qo'shish.
x=2\sqrt{37}+6
12+4\sqrt{37} ni 2 ga bo'lish.
x=\frac{12-4\sqrt{37}}{2}
x=\frac{12±4\sqrt{37}}{2} tenglamasini yeching, bunda ± manfiy. 12 dan 4\sqrt{37} ni ayirish.
x=6-2\sqrt{37}
12-4\sqrt{37} ni 2 ga bo'lish.
x^{2}-12x-112=\left(x-\left(2\sqrt{37}+6\right)\right)\left(x-\left(6-2\sqrt{37}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 6+2\sqrt{37} ga va x_{2} uchun 6-2\sqrt{37} ga bo‘ling.