Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-1200x+40000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1200\right)±\sqrt{\left(-1200\right)^{2}-4\times 40000}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1200 ni b va 40000 ni c bilan almashtiring.
x=\frac{-\left(-1200\right)±\sqrt{1440000-4\times 40000}}{2}
-1200 kvadratini chiqarish.
x=\frac{-\left(-1200\right)±\sqrt{1440000-160000}}{2}
-4 ni 40000 marotabaga ko'paytirish.
x=\frac{-\left(-1200\right)±\sqrt{1280000}}{2}
1440000 ni -160000 ga qo'shish.
x=\frac{-\left(-1200\right)±800\sqrt{2}}{2}
1280000 ning kvadrat ildizini chiqarish.
x=\frac{1200±800\sqrt{2}}{2}
-1200 ning teskarisi 1200 ga teng.
x=\frac{800\sqrt{2}+1200}{2}
x=\frac{1200±800\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. 1200 ni 800\sqrt{2} ga qo'shish.
x=400\sqrt{2}+600
1200+800\sqrt{2} ni 2 ga bo'lish.
x=\frac{1200-800\sqrt{2}}{2}
x=\frac{1200±800\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. 1200 dan 800\sqrt{2} ni ayirish.
x=600-400\sqrt{2}
1200-800\sqrt{2} ni 2 ga bo'lish.
x=400\sqrt{2}+600 x=600-400\sqrt{2}
Tenglama yechildi.
x^{2}-1200x+40000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-1200x+40000-40000=-40000
Tenglamaning ikkala tarafidan 40000 ni ayirish.
x^{2}-1200x=-40000
O‘zidan 40000 ayirilsa 0 qoladi.
x^{2}-1200x+\left(-600\right)^{2}=-40000+\left(-600\right)^{2}
-1200 ni bo‘lish, x shartining koeffitsienti, 2 ga -600 olish uchun. Keyin, -600 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-1200x+360000=-40000+360000
-600 kvadratini chiqarish.
x^{2}-1200x+360000=320000
-40000 ni 360000 ga qo'shish.
\left(x-600\right)^{2}=320000
x^{2}-1200x+360000 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-600\right)^{2}}=\sqrt{320000}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-600=400\sqrt{2} x-600=-400\sqrt{2}
Qisqartirish.
x=400\sqrt{2}+600 x=600-400\sqrt{2}
600 ni tenglamaning ikkala tarafiga qo'shish.