Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-11x+56-5x=13
Ikkala tarafdan 5x ni ayirish.
x^{2}-16x+56=13
-16x ni olish uchun -11x va -5x ni birlashtirish.
x^{2}-16x+56-13=0
Ikkala tarafdan 13 ni ayirish.
x^{2}-16x+43=0
43 olish uchun 56 dan 13 ni ayirish.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 43}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -16 ni b va 43 ni c bilan almashtiring.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 43}}{2}
-16 kvadratini chiqarish.
x=\frac{-\left(-16\right)±\sqrt{256-172}}{2}
-4 ni 43 marotabaga ko'paytirish.
x=\frac{-\left(-16\right)±\sqrt{84}}{2}
256 ni -172 ga qo'shish.
x=\frac{-\left(-16\right)±2\sqrt{21}}{2}
84 ning kvadrat ildizini chiqarish.
x=\frac{16±2\sqrt{21}}{2}
-16 ning teskarisi 16 ga teng.
x=\frac{2\sqrt{21}+16}{2}
x=\frac{16±2\sqrt{21}}{2} tenglamasini yeching, bunda ± musbat. 16 ni 2\sqrt{21} ga qo'shish.
x=\sqrt{21}+8
16+2\sqrt{21} ni 2 ga bo'lish.
x=\frac{16-2\sqrt{21}}{2}
x=\frac{16±2\sqrt{21}}{2} tenglamasini yeching, bunda ± manfiy. 16 dan 2\sqrt{21} ni ayirish.
x=8-\sqrt{21}
16-2\sqrt{21} ni 2 ga bo'lish.
x=\sqrt{21}+8 x=8-\sqrt{21}
Tenglama yechildi.
x^{2}-11x+56-5x=13
Ikkala tarafdan 5x ni ayirish.
x^{2}-16x+56=13
-16x ni olish uchun -11x va -5x ni birlashtirish.
x^{2}-16x=13-56
Ikkala tarafdan 56 ni ayirish.
x^{2}-16x=-43
-43 olish uchun 13 dan 56 ni ayirish.
x^{2}-16x+\left(-8\right)^{2}=-43+\left(-8\right)^{2}
-16 ni bo‘lish, x shartining koeffitsienti, 2 ga -8 olish uchun. Keyin, -8 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-16x+64=-43+64
-8 kvadratini chiqarish.
x^{2}-16x+64=21
-43 ni 64 ga qo'shish.
\left(x-8\right)^{2}=21
x^{2}-16x+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-8\right)^{2}}=\sqrt{21}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-8=\sqrt{21} x-8=-\sqrt{21}
Qisqartirish.
x=\sqrt{21}+8 x=8-\sqrt{21}
8 ni tenglamaning ikkala tarafiga qo'shish.