Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-11 ab=1\times 24=24
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda x^{2}+ax+bx+24 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-24 -2,-12 -3,-8 -4,-6
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 24-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Har bir juftlik yigʻindisini hisoblang.
a=-8 b=-3
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(x^{2}-8x\right)+\left(-3x+24\right)
x^{2}-11x+24 ni \left(x^{2}-8x\right)+\left(-3x+24\right) sifatida qaytadan yozish.
x\left(x-8\right)-3\left(x-8\right)
Birinchi guruhda x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(x-8\right)\left(x-3\right)
Distributiv funktsiyasidan foydalangan holda x-8 umumiy terminini chiqaring.
x^{2}-11x+24=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
-11 kvadratini chiqarish.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
-4 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
121 ni -96 ga qo'shish.
x=\frac{-\left(-11\right)±5}{2}
25 ning kvadrat ildizini chiqarish.
x=\frac{11±5}{2}
-11 ning teskarisi 11 ga teng.
x=\frac{16}{2}
x=\frac{11±5}{2} tenglamasini yeching, bunda ± musbat. 11 ni 5 ga qo'shish.
x=8
16 ni 2 ga bo'lish.
x=\frac{6}{2}
x=\frac{11±5}{2} tenglamasini yeching, bunda ± manfiy. 11 dan 5 ni ayirish.
x=3
6 ni 2 ga bo'lish.
x^{2}-11x+24=\left(x-8\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 8 ga va x_{2} uchun 3 ga bo‘ling.