Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-10x-400=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-400\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -10 ni b va -400 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-400\right)}}{2}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+1600}}{2}
-4 ni -400 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{1700}}{2}
100 ni 1600 ga qo'shish.
x=\frac{-\left(-10\right)±10\sqrt{17}}{2}
1700 ning kvadrat ildizini chiqarish.
x=\frac{10±10\sqrt{17}}{2}
-10 ning teskarisi 10 ga teng.
x=\frac{10\sqrt{17}+10}{2}
x=\frac{10±10\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. 10 ni 10\sqrt{17} ga qo'shish.
x=5\sqrt{17}+5
10+10\sqrt{17} ni 2 ga bo'lish.
x=\frac{10-10\sqrt{17}}{2}
x=\frac{10±10\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. 10 dan 10\sqrt{17} ni ayirish.
x=5-5\sqrt{17}
10-10\sqrt{17} ni 2 ga bo'lish.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
Tenglama yechildi.
x^{2}-10x-400=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-10x-400-\left(-400\right)=-\left(-400\right)
400 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-10x=-\left(-400\right)
O‘zidan -400 ayirilsa 0 qoladi.
x^{2}-10x=400
0 dan -400 ni ayirish.
x^{2}-10x+\left(-5\right)^{2}=400+\left(-5\right)^{2}
-10 ni bo‘lish, x shartining koeffitsienti, 2 ga -5 olish uchun. Keyin, -5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-10x+25=400+25
-5 kvadratini chiqarish.
x^{2}-10x+25=425
400 ni 25 ga qo'shish.
\left(x-5\right)^{2}=425
x^{2}-10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-5\right)^{2}}=\sqrt{425}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-5=5\sqrt{17} x-5=-5\sqrt{17}
Qisqartirish.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
5 ni tenglamaning ikkala tarafiga qo'shish.