x uchun yechish
x=-3
x=31
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
{ x }^{ 2 } -( \frac{ 7+x }{ 2 } )(( \frac{ 7+x }{ 2 } )+x)=11
Baham ko'rish
Klipbordga nusxa olish
2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
7+x ga \frac{7+x}{2}+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
7\times \frac{7+x}{2} ni yagona kasrga aylantiring.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
x\times \frac{7+x}{2} ni yagona kasrga aylantiring.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
\frac{7\left(7+x\right)}{2} va \frac{x\left(7+x\right)}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
7\left(7+x\right)+x\left(7+x\right) ichidagi ko‘paytirishlarni bajaring.
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
49+7x+7x+x^{2} kabi iboralarga o‘xshab birlashtiring.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
\frac{49+14x+x^{2}}{2}+7x+x^{2} teskarisini topish uchun har birining teskarisini toping.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} natijani olish uchun 49+14x+x^{2} ning har bir ifodasini 2 ga bo‘ling.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} teskarisini topish uchun har birining teskarisini toping.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
\frac{1}{2}x^{2} ni olish uchun x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
-14x ni olish uchun -7x va -7x ni birlashtirish.
\frac{1}{2}x^{2}-\frac{49}{2}-14x-22=0
Ikkala tarafdan 22 ni ayirish.
\frac{1}{2}x^{2}-\frac{93}{2}-14x=0
-\frac{93}{2} olish uchun -\frac{49}{2} dan 22 ni ayirish.
\frac{1}{2}x^{2}-14x-\frac{93}{2}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -14 ni b va -\frac{93}{2} ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times \frac{1}{2}\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-2\left(-\frac{93}{2}\right)}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+93}}{2\times \frac{1}{2}}
-2 ni -\frac{93}{2} marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{289}}{2\times \frac{1}{2}}
196 ni 93 ga qo'shish.
x=\frac{-\left(-14\right)±17}{2\times \frac{1}{2}}
289 ning kvadrat ildizini chiqarish.
x=\frac{14±17}{2\times \frac{1}{2}}
-14 ning teskarisi 14 ga teng.
x=\frac{14±17}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{31}{1}
x=\frac{14±17}{1} tenglamasini yeching, bunda ± musbat. 14 ni 17 ga qo'shish.
x=31
31 ni 1 ga bo'lish.
x=-\frac{3}{1}
x=\frac{14±17}{1} tenglamasini yeching, bunda ± manfiy. 14 dan 17 ni ayirish.
x=-3
-3 ni 1 ga bo'lish.
x=31 x=-3
Tenglama yechildi.
2x^{2}-\left(7+x\right)\left(\frac{7+x}{2}+x\right)=22
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
2x^{2}-\left(7\times \frac{7+x}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
7+x ga \frac{7+x}{2}+x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+x\times \frac{7+x}{2}+x^{2}\right)=22
7\times \frac{7+x}{2} ni yagona kasrga aylantiring.
2x^{2}-\left(\frac{7\left(7+x\right)}{2}+7x+\frac{x\left(7+x\right)}{2}+x^{2}\right)=22
x\times \frac{7+x}{2} ni yagona kasrga aylantiring.
2x^{2}-\left(\frac{7\left(7+x\right)+x\left(7+x\right)}{2}+7x+x^{2}\right)=22
\frac{7\left(7+x\right)}{2} va \frac{x\left(7+x\right)}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
2x^{2}-\left(\frac{49+7x+7x+x^{2}}{2}+7x+x^{2}\right)=22
7\left(7+x\right)+x\left(7+x\right) ichidagi ko‘paytirishlarni bajaring.
2x^{2}-\left(\frac{49+14x+x^{2}}{2}+7x+x^{2}\right)=22
49+7x+7x+x^{2} kabi iboralarga o‘xshab birlashtiring.
2x^{2}-\frac{49+14x+x^{2}}{2}-7x-x^{2}=22
\frac{49+14x+x^{2}}{2}+7x+x^{2} teskarisini topish uchun har birining teskarisini toping.
x^{2}-\frac{49+14x+x^{2}}{2}-7x=22
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-\left(\frac{49}{2}+7x+\frac{1}{2}x^{2}\right)-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} natijani olish uchun 49+14x+x^{2} ning har bir ifodasini 2 ga bo‘ling.
x^{2}-\frac{49}{2}-7x-\frac{1}{2}x^{2}-7x=22
\frac{49}{2}+7x+\frac{1}{2}x^{2} teskarisini topish uchun har birining teskarisini toping.
\frac{1}{2}x^{2}-\frac{49}{2}-7x-7x=22
\frac{1}{2}x^{2} ni olish uchun x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}-\frac{49}{2}-14x=22
-14x ni olish uchun -7x va -7x ni birlashtirish.
\frac{1}{2}x^{2}-14x=22+\frac{49}{2}
\frac{49}{2} ni ikki tarafga qo’shing.
\frac{1}{2}x^{2}-14x=\frac{93}{2}
\frac{93}{2} olish uchun 22 va \frac{49}{2}'ni qo'shing.
\frac{\frac{1}{2}x^{2}-14x}{\frac{1}{2}}=\frac{\frac{93}{2}}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{14}{\frac{1}{2}}\right)x=\frac{\frac{93}{2}}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-28x=\frac{\frac{93}{2}}{\frac{1}{2}}
-14 ni \frac{1}{2} ga bo'lish -14 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-28x=93
\frac{93}{2} ni \frac{1}{2} ga bo'lish \frac{93}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-28x+\left(-14\right)^{2}=93+\left(-14\right)^{2}
-28 ni bo‘lish, x shartining koeffitsienti, 2 ga -14 olish uchun. Keyin, -14 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-28x+196=93+196
-14 kvadratini chiqarish.
x^{2}-28x+196=289
93 ni 196 ga qo'shish.
\left(x-14\right)^{2}=289
x^{2}-28x+196 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-14\right)^{2}}=\sqrt{289}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-14=17 x-14=-17
Qisqartirish.
x=31 x=-3
14 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}