Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-\frac{1}{10}x-\frac{3}{10}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\left(-\frac{1}{10}\right)^{2}-4\left(-\frac{3}{10}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -\frac{1}{10} ni b va -\frac{3}{10} ni c bilan almashtiring.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{1}{100}-4\left(-\frac{3}{10}\right)}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{10} kvadratini chiqarish.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{1}{100}+\frac{6}{5}}}{2}
-4 ni -\frac{3}{10} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{1}{10}\right)±\sqrt{\frac{121}{100}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{100} ni \frac{6}{5} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{1}{10}\right)±\frac{11}{10}}{2}
\frac{121}{100} ning kvadrat ildizini chiqarish.
x=\frac{\frac{1}{10}±\frac{11}{10}}{2}
-\frac{1}{10} ning teskarisi \frac{1}{10} ga teng.
x=\frac{\frac{6}{5}}{2}
x=\frac{\frac{1}{10}±\frac{11}{10}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{10} ni \frac{11}{10} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{3}{5}
\frac{6}{5} ni 2 ga bo'lish.
x=-\frac{1}{2}
x=\frac{\frac{1}{10}±\frac{11}{10}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{11}{10} ni \frac{1}{10} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=\frac{3}{5} x=-\frac{1}{2}
Tenglama yechildi.
x^{2}-\frac{1}{10}x-\frac{3}{10}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}-\frac{1}{10}x-\frac{3}{10}-\left(-\frac{3}{10}\right)=-\left(-\frac{3}{10}\right)
\frac{3}{10} ni tenglamaning ikkala tarafiga qo'shish.
x^{2}-\frac{1}{10}x=-\left(-\frac{3}{10}\right)
O‘zidan -\frac{3}{10} ayirilsa 0 qoladi.
x^{2}-\frac{1}{10}x=\frac{3}{10}
0 dan -\frac{3}{10} ni ayirish.
x^{2}-\frac{1}{10}x+\left(-\frac{1}{20}\right)^{2}=\frac{3}{10}+\left(-\frac{1}{20}\right)^{2}
-\frac{1}{10} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{20} olish uchun. Keyin, -\frac{1}{20} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{3}{10}+\frac{1}{400}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{20} kvadratini chiqarish.
x^{2}-\frac{1}{10}x+\frac{1}{400}=\frac{121}{400}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{10} ni \frac{1}{400} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{20}\right)^{2}=\frac{121}{400}
x^{2}-\frac{1}{10}x+\frac{1}{400} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{20}\right)^{2}}=\sqrt{\frac{121}{400}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{20}=\frac{11}{20} x-\frac{1}{20}=-\frac{11}{20}
Qisqartirish.
x=\frac{3}{5} x=-\frac{1}{2}
\frac{1}{20} ni tenglamaning ikkala tarafiga qo'shish.