x uchun yechish
x=5\sqrt{13}\approx 18,027756377
x=-5\sqrt{13}\approx -18,027756377
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}=650-x^{2}
650 olish uchun 25 va 625'ni qo'shing.
x^{2}+x^{2}=650
x^{2} ni ikki tarafga qo’shing.
2x^{2}=650
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
x^{2}=\frac{650}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=325
325 ni olish uchun 650 ni 2 ga bo‘ling.
x=5\sqrt{13} x=-5\sqrt{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=650-x^{2}
650 olish uchun 25 va 625'ni qo'shing.
x^{2}-650=-x^{2}
Ikkala tarafdan 650 ni ayirish.
x^{2}-650+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
2x^{2}-650=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-650\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -650 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-650\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-650\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{5200}}{2\times 2}
-8 ni -650 marotabaga ko'paytirish.
x=\frac{0±20\sqrt{13}}{2\times 2}
5200 ning kvadrat ildizini chiqarish.
x=\frac{0±20\sqrt{13}}{4}
2 ni 2 marotabaga ko'paytirish.
x=5\sqrt{13}
x=\frac{0±20\sqrt{13}}{4} tenglamasini yeching, bunda ± musbat.
x=-5\sqrt{13}
x=\frac{0±20\sqrt{13}}{4} tenglamasini yeching, bunda ± manfiy.
x=5\sqrt{13} x=-5\sqrt{13}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}