Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x=\sqrt{\pi } x=-\sqrt{\pi }
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\pi
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x^{2}-\pi =\pi -\pi
Tenglamaning ikkala tarafidan \pi ni ayirish.
x^{2}-\pi =0
O‘zidan \pi ayirilsa 0 qoladi.
x=\frac{0±\sqrt{0^{2}-4\left(-\pi \right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\pi ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\pi \right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\pi }}{2}
-4 ni -\pi marotabaga ko'paytirish.
x=\frac{0±2\sqrt{\pi }}{2}
4\pi ning kvadrat ildizini chiqarish.
x=\sqrt{\pi }
x=\frac{0±2\sqrt{\pi }}{2} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{\pi }
x=\frac{0±2\sqrt{\pi }}{2} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{\pi } x=-\sqrt{\pi }
Tenglama yechildi.