x uchun yechish
\left\{\begin{matrix}x=\frac{y-2z-10}{z+2}\text{, }&z\neq -2\\x\in \mathrm{R}\text{, }&y=6\text{ and }z=-2\end{matrix}\right,
y uchun yechish
y=xz+2x+2z+10
Baham ko'rish
Klipbordga nusxa olish
x^{2}+y=x^{2}+xz+2x+2z+10
x+2 ga x+z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+y-x^{2}=xz+2x+2z+10
Ikkala tarafdan x^{2} ni ayirish.
y=xz+2x+2z+10
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
xz+2x+2z+10=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
xz+2x+10=y-2z
Ikkala tarafdan 2z ni ayirish.
xz+2x=y-2z-10
Ikkala tarafdan 10 ni ayirish.
\left(z+2\right)x=y-2z-10
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(z+2\right)x}{z+2}=\frac{y-2z-10}{z+2}
Ikki tarafini 2+z ga bo‘ling.
x=\frac{y-2z-10}{z+2}
2+z ga bo'lish 2+z ga ko'paytirishni bekor qiladi.
x^{2}+y=x^{2}+xz+2x+2z+10
x+2 ga x+z ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y=x^{2}+xz+2x+2z+10-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
y=xz+2x+2z+10
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}