x uchun yechish
x = \frac{\sqrt{21} - 1}{2} \approx 1,791287847
x=\frac{-\sqrt{21}-1}{2}\approx -2,791287847
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}-x-\left(2x^{2}-5\right)=0
-x ni olish uchun x va -2x ni birlashtirish.
x^{2}-x-2x^{2}+5=0
2x^{2}-5 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-x+5=0
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -1 ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{21}}{2\left(-1\right)}
1 ni 20 ga qo'shish.
x=\frac{1±\sqrt{21}}{2\left(-1\right)}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{21}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{21}+1}{-2}
x=\frac{1±\sqrt{21}}{-2} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{21} ga qo'shish.
x=\frac{-\sqrt{21}-1}{2}
1+\sqrt{21} ni -2 ga bo'lish.
x=\frac{1-\sqrt{21}}{-2}
x=\frac{1±\sqrt{21}}{-2} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{21} ni ayirish.
x=\frac{\sqrt{21}-1}{2}
1-\sqrt{21} ni -2 ga bo'lish.
x=\frac{-\sqrt{21}-1}{2} x=\frac{\sqrt{21}-1}{2}
Tenglama yechildi.
x^{2}-x-\left(2x^{2}-5\right)=0
-x ni olish uchun x va -2x ni birlashtirish.
x^{2}-x-2x^{2}+5=0
2x^{2}-5 teskarisini topish uchun har birining teskarisini toping.
-x^{2}-x+5=0
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
-x^{2}-x=-5
Ikkala tarafdan 5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-x^{2}-x}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{5}{-1}
-1 ni -1 ga bo'lish.
x^{2}+x=5
-5 ni -1 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=5+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{21}{4}
5 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{21}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{21}}{2} x+\frac{1}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
x=\frac{\sqrt{21}-1}{2} x=\frac{-\sqrt{21}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}