x uchun yechish (complex solution)
x=\sqrt{2}-4\approx -2,585786438
x=-\left(\sqrt{2}+4\right)\approx -5,414213562
x uchun yechish
x=\sqrt{2}-4\approx -2,585786438
x=-\sqrt{2}-4\approx -5,414213562
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+8x+4=-10
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+8x+4-\left(-10\right)=-10-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+8x+4-\left(-10\right)=0
O‘zidan -10 ayirilsa 0 qoladi.
x^{2}+8x+14=0
4 dan -10 ni ayirish.
x=\frac{-8±\sqrt{8^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 14 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 14}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{8}}{2}
64 ni -56 ga qo'shish.
x=\frac{-8±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{2}-8}{2}
x=\frac{-8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}-4
2\sqrt{2}-8 ni 2 ga bo'lish.
x=\frac{-2\sqrt{2}-8}{2}
x=\frac{-8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{2} ni ayirish.
x=-\sqrt{2}-4
-8-2\sqrt{2} ni 2 ga bo'lish.
x=\sqrt{2}-4 x=-\sqrt{2}-4
Tenglama yechildi.
x^{2}+8x+4=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+4-4=-10-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+8x=-10-4
O‘zidan 4 ayirilsa 0 qoladi.
x^{2}+8x=-14
-10 dan 4 ni ayirish.
x^{2}+8x+4^{2}=-14+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-14+16
4 kvadratini chiqarish.
x^{2}+8x+16=2
-14 ni 16 ga qo'shish.
\left(x+4\right)^{2}=2
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{2} x+4=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}-4 x=-\sqrt{2}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+8x+4=-10
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+8x+4-\left(-10\right)=-10-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+8x+4-\left(-10\right)=0
O‘zidan -10 ayirilsa 0 qoladi.
x^{2}+8x+14=0
4 dan -10 ni ayirish.
x=\frac{-8±\sqrt{8^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 14 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 14}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{8}}{2}
64 ni -56 ga qo'shish.
x=\frac{-8±2\sqrt{2}}{2}
8 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{2}-8}{2}
x=\frac{-8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{2} ga qo'shish.
x=\sqrt{2}-4
2\sqrt{2}-8 ni 2 ga bo'lish.
x=\frac{-2\sqrt{2}-8}{2}
x=\frac{-8±2\sqrt{2}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{2} ni ayirish.
x=-\sqrt{2}-4
-8-2\sqrt{2} ni 2 ga bo'lish.
x=\sqrt{2}-4 x=-\sqrt{2}-4
Tenglama yechildi.
x^{2}+8x+4=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+4-4=-10-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+8x=-10-4
O‘zidan 4 ayirilsa 0 qoladi.
x^{2}+8x=-14
-10 dan 4 ni ayirish.
x^{2}+8x+4^{2}=-14+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-14+16
4 kvadratini chiqarish.
x^{2}+8x+16=2
-14 ni 16 ga qo'shish.
\left(x+4\right)^{2}=2
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{2} x+4=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}-4 x=-\sqrt{2}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}