Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+8x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 10 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 10}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{24}}{2}
64 ni -40 ga qo'shish.
x=\frac{-8±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{6}-8}{2}
x=\frac{-8±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{6} ga qo'shish.
x=\sqrt{6}-4
-8+2\sqrt{6} ni 2 ga bo'lish.
x=\frac{-2\sqrt{6}-8}{2}
x=\frac{-8±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{6} ni ayirish.
x=-\sqrt{6}-4
-8-2\sqrt{6} ni 2 ga bo'lish.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Tenglama yechildi.
x^{2}+8x+10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+10-10=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
x^{2}+8x=-10
O‘zidan 10 ayirilsa 0 qoladi.
x^{2}+8x+4^{2}=-10+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-10+16
4 kvadratini chiqarish.
x^{2}+8x+16=6
-10 ni 16 ga qo'shish.
\left(x+4\right)^{2}=6
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{6} x+4=-\sqrt{6}
Qisqartirish.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
x^{2}+8x+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 8 ni b va 10 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 10}}{2}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{24}}{2}
64 ni -40 ga qo'shish.
x=\frac{-8±2\sqrt{6}}{2}
24 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{6}-8}{2}
x=\frac{-8±2\sqrt{6}}{2} tenglamasini yeching, bunda ± musbat. -8 ni 2\sqrt{6} ga qo'shish.
x=\sqrt{6}-4
-8+2\sqrt{6} ni 2 ga bo'lish.
x=\frac{-2\sqrt{6}-8}{2}
x=\frac{-8±2\sqrt{6}}{2} tenglamasini yeching, bunda ± manfiy. -8 dan 2\sqrt{6} ni ayirish.
x=-\sqrt{6}-4
-8-2\sqrt{6} ni 2 ga bo'lish.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Tenglama yechildi.
x^{2}+8x+10=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+8x+10-10=-10
Tenglamaning ikkala tarafidan 10 ni ayirish.
x^{2}+8x=-10
O‘zidan 10 ayirilsa 0 qoladi.
x^{2}+8x+4^{2}=-10+4^{2}
8 ni bo‘lish, x shartining koeffitsienti, 2 ga 4 olish uchun. Keyin, 4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+8x+16=-10+16
4 kvadratini chiqarish.
x^{2}+8x+16=6
-10 ni 16 ga qo'shish.
\left(x+4\right)^{2}=6
x^{2}+8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+4\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+4=\sqrt{6} x+4=-\sqrt{6}
Qisqartirish.
x=\sqrt{6}-4 x=-\sqrt{6}-4
Tenglamaning ikkala tarafidan 4 ni ayirish.