Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+8=89
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+6x+8-89=89-89
Tenglamaning ikkala tarafidan 89 ni ayirish.
x^{2}+6x+8-89=0
O‘zidan 89 ayirilsa 0 qoladi.
x^{2}+6x-81=0
8 dan 89 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\left(-81\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -81 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-81\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+324}}{2}
-4 ni -81 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{360}}{2}
36 ni 324 ga qo'shish.
x=\frac{-6±6\sqrt{10}}{2}
360 ning kvadrat ildizini chiqarish.
x=\frac{6\sqrt{10}-6}{2}
x=\frac{-6±6\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 6\sqrt{10} ga qo'shish.
x=3\sqrt{10}-3
-6+6\sqrt{10} ni 2 ga bo'lish.
x=\frac{-6\sqrt{10}-6}{2}
x=\frac{-6±6\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 6\sqrt{10} ni ayirish.
x=-3\sqrt{10}-3
-6-6\sqrt{10} ni 2 ga bo'lish.
x=3\sqrt{10}-3 x=-3\sqrt{10}-3
Tenglama yechildi.
x^{2}+6x+8=89
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+8-8=89-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
x^{2}+6x=89-8
O‘zidan 8 ayirilsa 0 qoladi.
x^{2}+6x=81
89 dan 8 ni ayirish.
x^{2}+6x+3^{2}=81+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=81+9
3 kvadratini chiqarish.
x^{2}+6x+9=90
81 ni 9 ga qo'shish.
\left(x+3\right)^{2}=90
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{90}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=3\sqrt{10} x+3=-3\sqrt{10}
Qisqartirish.
x=3\sqrt{10}-3 x=-3\sqrt{10}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.