Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -5 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-5\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{56}}{2}
36 ni 20 ga qo'shish.
x=\frac{-6±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-6}{2}
x=\frac{-6±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-3
-6+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-6}{2}
x=\frac{-6±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-3
-6-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglama yechildi.
x^{2}+6x-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+6x=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+6x=5
0 dan -5 ni ayirish.
x^{2}+6x+3^{2}=5+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=5+9
3 kvadratini chiqarish.
x^{2}+6x+9=14
5 ni 9 ga qo'shish.
\left(x+3\right)^{2}=14
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{14} x+3=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+6x-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va -5 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\left(-5\right)}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{56}}{2}
36 ni 20 ga qo'shish.
x=\frac{-6±2\sqrt{14}}{2}
56 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{14}-6}{2}
x=\frac{-6±2\sqrt{14}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{14} ga qo'shish.
x=\sqrt{14}-3
-6+2\sqrt{14} ni 2 ga bo'lish.
x=\frac{-2\sqrt{14}-6}{2}
x=\frac{-6±2\sqrt{14}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{14} ni ayirish.
x=-\sqrt{14}-3
-6-2\sqrt{14} ni 2 ga bo'lish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglama yechildi.
x^{2}+6x-5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x-5-\left(-5\right)=-\left(-5\right)
5 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+6x=-\left(-5\right)
O‘zidan -5 ayirilsa 0 qoladi.
x^{2}+6x=5
0 dan -5 ni ayirish.
x^{2}+6x+3^{2}=5+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=5+9
3 kvadratini chiqarish.
x^{2}+6x+9=14
5 ni 9 ga qo'shish.
\left(x+3\right)^{2}=14
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{14} x+3=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.