x uchun yechish (complex solution)
x=-3+3\sqrt{3}i\approx -3+5,196152423i
x=-3\sqrt{3}i-3\approx -3-5,196152423i
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+6x+36=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 36}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va 36 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 36}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-144}}{2}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{-108}}{2}
36 ni -144 ga qo'shish.
x=\frac{-6±6\sqrt{3}i}{2}
-108 ning kvadrat ildizini chiqarish.
x=\frac{-6+6\sqrt{3}i}{2}
x=\frac{-6±6\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. -6 ni 6i\sqrt{3} ga qo'shish.
x=-3+3\sqrt{3}i
-6+6i\sqrt{3} ni 2 ga bo'lish.
x=\frac{-6\sqrt{3}i-6}{2}
x=\frac{-6±6\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 6i\sqrt{3} ni ayirish.
x=-3\sqrt{3}i-3
-6-6i\sqrt{3} ni 2 ga bo'lish.
x=-3+3\sqrt{3}i x=-3\sqrt{3}i-3
Tenglama yechildi.
x^{2}+6x+36=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+36-36=-36
Tenglamaning ikkala tarafidan 36 ni ayirish.
x^{2}+6x=-36
O‘zidan 36 ayirilsa 0 qoladi.
x^{2}+6x+3^{2}=-36+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=-36+9
3 kvadratini chiqarish.
x^{2}+6x+9=-27
-36 ni 9 ga qo'shish.
\left(x+3\right)^{2}=-27
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{-27}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=3\sqrt{3}i x+3=-3\sqrt{3}i
Qisqartirish.
x=-3+3\sqrt{3}i x=-3\sqrt{3}i-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}