Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+6x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va 2 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 2}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{28}}{2}
36 ni -8 ga qo'shish.
x=\frac{-6±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-3
-6+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-3
-6-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-3 x=-\sqrt{7}-3
Tenglama yechildi.
x^{2}+6x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}+6x=-2
O‘zidan 2 ayirilsa 0 qoladi.
x^{2}+6x+3^{2}=-2+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=-2+9
3 kvadratini chiqarish.
x^{2}+6x+9=7
-2 ni 9 ga qo'shish.
\left(x+3\right)^{2}=7
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{7} x+3=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-3 x=-\sqrt{7}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
x^{2}+6x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 6 ni b va 2 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 2}}{2}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{28}}{2}
36 ni -8 ga qo'shish.
x=\frac{-6±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{7} ga qo'shish.
x=\sqrt{7}-3
-6+2\sqrt{7} ni 2 ga bo'lish.
x=\frac{-2\sqrt{7}-6}{2}
x=\frac{-6±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{7} ni ayirish.
x=-\sqrt{7}-3
-6-2\sqrt{7} ni 2 ga bo'lish.
x=\sqrt{7}-3 x=-\sqrt{7}-3
Tenglama yechildi.
x^{2}+6x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+6x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x^{2}+6x=-2
O‘zidan 2 ayirilsa 0 qoladi.
x^{2}+6x+3^{2}=-2+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=-2+9
3 kvadratini chiqarish.
x^{2}+6x+9=7
-2 ni 9 ga qo'shish.
\left(x+3\right)^{2}=7
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{7} x+3=-\sqrt{7}
Qisqartirish.
x=\sqrt{7}-3 x=-\sqrt{7}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.