Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+64x-566=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-64±\sqrt{64^{2}-4\left(-566\right)}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-64±\sqrt{4096-4\left(-566\right)}}{2}
64 kvadratini chiqarish.
x=\frac{-64±\sqrt{4096+2264}}{2}
-4 ni -566 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{6360}}{2}
4096 ni 2264 ga qo'shish.
x=\frac{-64±2\sqrt{1590}}{2}
6360 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{1590}-64}{2}
x=\frac{-64±2\sqrt{1590}}{2} tenglamasini yeching, bunda ± musbat. -64 ni 2\sqrt{1590} ga qo'shish.
x=\sqrt{1590}-32
-64+2\sqrt{1590} ni 2 ga bo'lish.
x=\frac{-2\sqrt{1590}-64}{2}
x=\frac{-64±2\sqrt{1590}}{2} tenglamasini yeching, bunda ± manfiy. -64 dan 2\sqrt{1590} ni ayirish.
x=-\sqrt{1590}-32
-64-2\sqrt{1590} ni 2 ga bo'lish.
x^{2}+64x-566=\left(x-\left(\sqrt{1590}-32\right)\right)\left(x-\left(-\sqrt{1590}-32\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -32+\sqrt{1590} ga va x_{2} uchun -32-\sqrt{1590} ga bo‘ling.