x uchun yechish
x=10\sqrt{73}-30\approx 55,440037453
x=-10\sqrt{73}-30\approx -115,440037453
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+60x-6400=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-60±\sqrt{60^{2}-4\left(-6400\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 60 ni b va -6400 ni c bilan almashtiring.
x=\frac{-60±\sqrt{3600-4\left(-6400\right)}}{2}
60 kvadratini chiqarish.
x=\frac{-60±\sqrt{3600+25600}}{2}
-4 ni -6400 marotabaga ko'paytirish.
x=\frac{-60±\sqrt{29200}}{2}
3600 ni 25600 ga qo'shish.
x=\frac{-60±20\sqrt{73}}{2}
29200 ning kvadrat ildizini chiqarish.
x=\frac{20\sqrt{73}-60}{2}
x=\frac{-60±20\sqrt{73}}{2} tenglamasini yeching, bunda ± musbat. -60 ni 20\sqrt{73} ga qo'shish.
x=10\sqrt{73}-30
-60+20\sqrt{73} ni 2 ga bo'lish.
x=\frac{-20\sqrt{73}-60}{2}
x=\frac{-60±20\sqrt{73}}{2} tenglamasini yeching, bunda ± manfiy. -60 dan 20\sqrt{73} ni ayirish.
x=-10\sqrt{73}-30
-60-20\sqrt{73} ni 2 ga bo'lish.
x=10\sqrt{73}-30 x=-10\sqrt{73}-30
Tenglama yechildi.
x^{2}+60x-6400=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+60x-6400-\left(-6400\right)=-\left(-6400\right)
6400 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+60x=-\left(-6400\right)
O‘zidan -6400 ayirilsa 0 qoladi.
x^{2}+60x=6400
0 dan -6400 ni ayirish.
x^{2}+60x+30^{2}=6400+30^{2}
60 ni bo‘lish, x shartining koeffitsienti, 2 ga 30 olish uchun. Keyin, 30 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+60x+900=6400+900
30 kvadratini chiqarish.
x^{2}+60x+900=7300
6400 ni 900 ga qo'shish.
\left(x+30\right)^{2}=7300
x^{2}+60x+900 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+30\right)^{2}}=\sqrt{7300}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+30=10\sqrt{73} x+30=-10\sqrt{73}
Qisqartirish.
x=10\sqrt{73}-30 x=-10\sqrt{73}-30
Tenglamaning ikkala tarafidan 30 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}