Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+5x-30=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\left(-30\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va -30 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\left(-30\right)}}{2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25+120}}{2}
-4 ni -30 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{145}}{2}
25 ni 120 ga qo'shish.
x=\frac{\sqrt{145}-5}{2}
x=\frac{-5±\sqrt{145}}{2} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{145} ga qo'shish.
x=\frac{-\sqrt{145}-5}{2}
x=\frac{-5±\sqrt{145}}{2} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{145} ni ayirish.
x=\frac{\sqrt{145}-5}{2} x=\frac{-\sqrt{145}-5}{2}
Tenglama yechildi.
x^{2}+5x-30=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+5x-30-\left(-30\right)=-\left(-30\right)
30 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+5x=-\left(-30\right)
O‘zidan -30 ayirilsa 0 qoladi.
x^{2}+5x=30
0 dan -30 ni ayirish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=30+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=30+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{145}{4}
30 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{145}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{145}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{145}}{2} x+\frac{5}{2}=-\frac{\sqrt{145}}{2}
Qisqartirish.
x=\frac{\sqrt{145}-5}{2} x=\frac{-\sqrt{145}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.