Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}+5x=-14
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+5x-\left(-14\right)=-14-\left(-14\right)
14 ni tenglamaning ikkala tarafiga qo'shish.
x^{2}+5x-\left(-14\right)=0
O‘zidan -14 ayirilsa 0 qoladi.
x^{2}+5x+14=0
0 dan -14 ni ayirish.
x=\frac{-5±\sqrt{5^{2}-4\times 14}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va 14 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 14}}{2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-56}}{2}
-4 ni 14 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-31}}{2}
25 ni -56 ga qo'shish.
x=\frac{-5±\sqrt{31}i}{2}
-31 ning kvadrat ildizini chiqarish.
x=\frac{-5+\sqrt{31}i}{2}
x=\frac{-5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{31} ga qo'shish.
x=\frac{-\sqrt{31}i-5}{2}
x=\frac{-5±\sqrt{31}i}{2} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{31} ni ayirish.
x=\frac{-5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-5}{2}
Tenglama yechildi.
x^{2}+5x=-14
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-14+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=-14+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=-\frac{31}{4}
-14 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=-\frac{31}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{31}i}{2} x+\frac{5}{2}=-\frac{\sqrt{31}i}{2}
Qisqartirish.
x=\frac{-5+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.